Mordenite Zeolite Synthesized Hydrothermally for Treatment of Real Petroleum Refinery Effluent: RSM Optimization, Kinetics, and Isotherm Studies

Authors

https://doi.org/10.48313/bic.vi.38

Abstract

Petroleum refinery wastewater is one of the most challenging industrial effluents due to its high Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), and turbidity. In this study, mordenite zeolite was successfully synthesized via the hydrothermal method and applied as an adsorbent for the treatment of real petroleum refinery wastewater from the Kermanshah refinery in Iran. X-Ray Diffraction (XRD) characterized the synthesized zeolite. Central Composite Design (CCD) under Response Surface Methodology (RSM) was employed to investigate and optimize the effects of operational parameters, including pH (4–10), contact time (30–150 min), and adsorbent dosage (2–10 g/L) on the removal efficiencies of COD, BOD, and turbidity. The quadratic models showed high accuracy with R² values of 0.98, 0.97, and 0.99 for COD, BOD, and turbidity removal, respectively. Under optimum conditions (pH = 6.2, contact time = 114 min, adsorbent dosage = 8.3 g/L), the removal efficiencies reached 78.4% for COD, 84.6% for BOD, and 92.1% for turbidity. Adsorption kinetics followed the pseudo-second-order model, and equilibrium data were well described by both the Langmuir and the Freundlich isotherms, with a maximum adsorption capacity (qₘₐₓ) of 68.5 mg/g for COD. The results demonstrate that hydrothermally synthesized mordenite zeolite is a cost-effective and efficient adsorbent for the treatment of real petroleum refinery wastewater.

Keywords:

Mordenite zeolite, Petroleum refinery, Wastewater, Adsorption, Hydrothermal synthesis, Response surface methodology optimization

References

  1. [1] Katal, R., Baei, M. S., Rahmati, H. T., & Esfandian, H. (2012). Kinetic, isotherm and thermodynamic study of nitrate adsorption from aqueous solution using modified rice husk. Journal of industrial and engineering chemistry, 18(1), 295–302. https://doi.org/10.1016/j.jiec.2011.11.035

  2. [2] Caro, J., & Noack, M. (2008). Zeolite membranes-recent developments and progress. Microporous and mesoporous materials, 115(3), 215–233. https://doi.org/10.1016/j.micromeso.2008.03.008

  3. [3] Cui, J., Zhang, X., Liu, H., Liu, S., & Yeung, K. L. (2008). Preparation and application of zeolite/ceramic microfiltration membranes for treatment of oil contaminated water. Journal of membrane science, 325(1), 420–426. https://doi.org/10.1016/j.memsci.2008.08.015

  4. [4] El-Naas, M. H., Al-Zuhair, S., & Alhaija, M. A. (2009). Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon. Chemical engineering journal, 162(3), 997–1005. https://doi.org/10.1016/j.cej.2010.07.007

  5. [5] Damayanti, A., Ujang, Z., & Salim, M. R. (2011). The influenced of PAC, zeolite, and Moringa oleifera as biofouling reducer (BFR) on hybrid membrane bioreactor of palm oil mill effluent (POME). Bioresource technology, 102(6), 4341–4346. https://doi.org/10.1016/j.biortech.2010.12.061

  6. [6] Vignola, R., Bagatin, R., Alessandra De Folly, D., Flego, C., Nalli, M., Ghisletti, D., … ., & Sisto, R. (2011). Zeolites in a permeable reactive barrier (PRB): One year of field experience in a refinery groundwater—Part 1: The performances. Chemical engineering journal, 178, 204–209. https://doi.org/10.1016/j.cej.2011.10.050

  7. [7] Ishak, S., Malakahmad, A., & Isa, M. H. (2012). Refinery wastewater biological treatment: A short review. Journal of scientific and industrial research, 71(4), 251. https://www.academia.edu/download/107510621/JSIR_20714_20251-256.pdf

  8. [8] Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology advances, 27(2), 195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002

  9. [9] Ahmaruzzaman, M. (2011). Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Advances in colloid and interface science, 166(1–2), 36–59. https://doi.org/10.1016/j.cis.2011.04.005

  10. [10] Breck, D. W. (1974). Zeolite molecular sieves: structure, chemistry, and use. Wiley. https://cir.nii.ac.jp/crid/1971149384799133967

  11. [11] McCusker, L. B., & Baerlocher, C. (2007). Zeolite structures. Studies in surface science and catalysis (Vol. 168, pp. 13–37). Elsevier. https://doi.org/10.1016/S0167-2991(07)80790-7

  12. [12] Maretto, M., Vignola, R., Williams, C. D., Bagatin, R., Latini, A., & Papini, M. P. (2015). Adsorption of hydrocarbons from industrial wastewater onto a silica mesoporous material: Structural and thermal study. Microporous and mesoporous materials, 203, 139–150. https://doi.org/10.1016/j.micromeso.2014.10.021

  13. [13] Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. https://doi.org/10.1016/j.talanta.2008.05.019

  14. [14] Box, G. E. P., & Wilson, K. B. (1992). On the experimental attainment of optimum conditions. In Breakthroughs in statistics: methodology and distribution (pp. 270–310). Springer. https://doi.org/10.1007/978-1-4612-4380-9_23%0A%0A

  15. [15] Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: Process and product optimization using designed experiments. John Wiley & Sons. https://B2n.ir/mx7851

  16. [16] Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of quality technology, 12(4), 214–219. https://doi.org/10.1080/00224065.1980.11980968

  17. [17] Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons. https://www.researchgate.net/publication/362079778

  18. [18] Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga svenska vetenskapsakademiens handlingar, 24(4), 1-39. https://www.sid.ir/paper/563615/en

  19. [19] Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process biochemistry, 34(5), 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

  20. [20] Weber Jr, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the sanitary engineering division, 89(2), 31–59. https://doi.org/10.1061/JSEDAI.0000430

  21. [21] Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the american chemical society, 40(9), 1361–1403. https://doi.org/10.1021/ja02242a004

  22. [22] Freundlich, H. (1907). Über die adsorption in lösungen. Zeitschrift für physikalische chemie, 57(1), 385–470. https://www.degruyterbrill.com/document/doi/10.1515/zpch-1907-5723/html

  23. [23] American Public Health Association. (1926). Standard methods for the examination of water and wastewater (Vol. 6). American public health association. https://books.google.com/books/about/Standard_Methods_for_the_Examination_of.html?id=V2LhtAEACAAJ

  24. [24] Lei, C., Hu, Y., & He, M. (2013). Adsorption characteristics of triclosan from aqueous solution onto cetylpyridinium bromide (CPB) modified zeolites. Chemical engineering journal, 219, 361–370. https://doi.org/10.1016/j.cej.2012.12.099.

  25. [25] Al-Ghouti, M. A., Al-Kaabi, M. A., Ashfaq, M. Y., & Da’na, D. A. (2019). Produced water characteristics, treatment and reuse: A review. Journal of water process engineering, 28, 222–239. https://doi.org/10.1016/j.jwpe.2019.02.001

  26. [26] Suchithra, P. S., Vazhayal, L., Mohamed, A. P., & Ananthakumar, S. (2012). Mesoporous organic-inorganic hybrid aerogels through ultrasonic assisted sol-gel intercalation of silica-PEG in bentonite for effective removal of dyes, volatile organic pollutants and petroleum products from aqueous solution. Chemical engineering journal, 200, 589–600. https://doi.org/10.1016/j.cej.2012.06.083

  27. [27] Yu, Y., Shapter, J. G., Popelka-Filcoff, R., Bennett, J. W., & Ellis, A. V. (2014). Copper removal using bio-inspired polydopamine coated natural zeolites. Journal of hazardous materials, 273, 174–182. https://doi.org/10.1016/j.jhazmat.2014.03.048

  28. [28] Al-Sareji, O. J. O. (2020). Removal of COD and TOC from domestic wastewater by using alum and peels of sunflowers seeds as natural coagulant. EurAsian journal of biosciences, 14, 2011–2014. https://www.researchgate.net/publication/343127733

  29. [29] Dąbrowski, A. (2001). Adsorption—from theory to practice. Advances in colloid and interface science, 93(1–3), 135–224. https://doi.org/10.1016/S0001-8686(00)00082-8

  30. [30] Shi, S., Qu, Y., Ma, F., & Zhou, J. (2014). Bioremediation of coking wastewater containing carbazole, dibenzofuran, dibenzothiophene and naphthalene by a naphthalene-cultivated Arthrobacter sp. W1. Bioresource technology, 164, 28–33. https://doi.org/10.1016/j.biortech.2014.04.010

  31. [31] Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 156(1), 2–10. https://doi.org/10.1016/j.cej.2009.09.013

  32. [32] Gupta, V. K., Carrott, P. J. M., Ribeiro Carrott, M. M. L., & Suhas. (2009). Low-cost adsorbents: Growing approach to wastewater treatment—A review. Critical reviews in environmental science and technology, 39(10), 783–842. https://doi.org/10.1080/10643380801977610

  33. [33] Ali, I., Asim, M., & Khan, T. A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of environmental management, 113, 170–183. https://doi.org/10.1016/j.jenvman.2012.08.028

  34. [34] Sorokhaibam, L. G., & Ahmaruzzaman, M. (2014). Phenolic wastewater treatment: Development and applications of new adsorbent materials. In Industrial wastewater treatment, recycling and reuse (pp. 323-368). Elsevier. https://www.researchgate.net/publication/288171342

  35. [35] Vjunov, A., Fulton, J. L., Huthwelker, T., Pin, S., Mei, D., Schenter, G. K., … ., & Lercher, J. A. (2014). Quantitatively probing the Al distribution in zeolites. Journal of the american chemical society, 136(23), 8296–8306. https://doi.org/10.1021/ja501361v

  36. [36] Ho, Y. S. (2006). Review of second-order models for adsorption systems. Journal of hazardous materials, 136(3), 681–689. https://doi.org/10.1016/j.jhazmat.2005.12.043

  37. [37] Jafarinejad, S. (2016). Petroleum waste treatment and pollution control. Butterworth-Heinemann. https://www.researchgate.net/publication/318585979

  38. [38] Valdés, H., Sánchez-Polo, M., Rivera-Utrilla, J., & Zaror, C. A. (2002). Effect of ozone treatment on surface properties of activated carbon. Langmuir, 18(6), 2111–2116. https://doi.org/10.1021/la010920a

  39. [39] Budarin, V. L., Clark, J. H., Tavener, S. J., & Wilson, K. (2004). Chemical reactions of double bonds in activated carbon: Microwave and bromination methods. Chemical communications, (23), 2736–2737. https://doi.org/10.1039/B411222A

  40. [40] Guo, C., Chen, Y., Chen, J., Wang, X., Zhang, G., Wang, J., … ., & Zhang, Z. (2014). Combined hydrolysis acidification and bio-contact oxidation system with air-lift tubes and activated carbon bioreactor for oilfield wastewater treatment. Bioresource technology, 169, 630–636. https://doi.org/10.1016/j.biortech.2014.07.018

  41. [41] Wang, S., & Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical engineering journal, 156(1), 11–24. https://doi.org/10.1016/j.cej.2009.10.029

  42. [42] Yavuz, C. T., Mayo, J. T., Suchecki, C., Wang, J., Ellsworth, A. Z., D’Couto, H., ... ., & Colvin, V. L. (2010). Pollution magnet: Nano-magnetite for arsenic removal from drinking water. Environmental geochemistry and health, 32(4), 327-334. https://doi.org/10.1007/s10653-010-9293-y%0A%0A

Published

2025-05-28

How to Cite

Nozick, V. . (2025). Mordenite Zeolite Synthesized Hydrothermally for Treatment of Real Petroleum Refinery Effluent: RSM Optimization, Kinetics, and Isotherm Studies. Biocompounds, 2(2), 86-97. https://doi.org/10.48313/bic.vi.38